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Both process monitoring and fault isolation are important and challenging tasks for quality control

and improvement in high-dimensional processes. Under a practical assumption that not all variables would

shift simultaneously, this paper proposes a variable-selection-based multivariate statistical process control

(SPC) procedure for process monitoring and fault diagnosis. A forward-selection algorithm is first utilized to

screen out potential out-of-control variables; a multivariate control chart is then set up to monitor suspicious

variables. Therefore, detection of faulty conditions and isolation of faulty variables can be achieved in one

step. Both simulation studies and a real example have shown the effectiveness of the proposed procedure.
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S
TATISTICAL monitoring of high-dimensional pro-
cesses and subsequent fault isolation are becom-

ing increasingly important in modern manufacturing
environments. For example, typical machining equip-
ments may have multiple key variables to be mea-
sured continuously; a sensor network could centralize
dozens or even more variables from multiple produc-
tion lines or stations for decision making (Ding et
al. (2006)); A profile that is useful for characteriz-
ing product quality in some applications (Woodall et
al. (2004)) may consist of hundreds of gauge points,
which form a dataset with an extremely high dimen-
sion. While monitoring dozens or even hundreds of
variables simultaneously is crucial to process control
and instrumentation, traditional statistical methods
based on small- or medium-size samples may not be
applicable due to the “curse-of-dimensionality” prob-
lem (Hastie et al. (2001)). Moreover, when a large
number of variables are sampled simultaneously and
fed to a central processor for decision making, impor-
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tant signals could be easily concealed by noises,
which make it difficult to detect potential process
shifts and locate root causes of faults.

Interestingly, in high-dimensional applications, it
is very rare to see all interested variables or quality
characteristics change or shift all at the same time.
Rather, a typical yet common phenomenon observed
in practice is that a subset of variables, which is dom-
inated by a common latent physical mechanism or
component, deviate from their normal condition due
to abnormal changes of the common mechanism or
component (Mastrangelo et al. (1996), Choi et al.
(2006), Li et al. (2008)). This is particularly true
in distributed sensor systems where groups of sen-
sors are responsible for detecting particular events.
For this reason, if information collected from multi-
ple streams of variables is treated equally, the effect
of weak, or sometimes even strong, signals could be-
come difficult to detect.

For example, consider Hotelling’s T 2 chart when
the dimension p increases. Suppose that there is a
shift in x1 with magnitude 1.0 and no shifts in all
other variables, i.e., we monitor x1, which is out of
control, plus (p−1) in-control variables. Without loss
of generality, we assume an identity correlation ma-
trix. Table 1 shows the probability for detecting the
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TABLE 1. Detection Probability of a Shift in x1 with

Magnitude 1 when p Varies (the false alarm probability

is 0.002 for all cases)

p Detection probability p Detection probability

1 0.982 11 0.354
2 0.964 12 0.281
3 0.937 13 0.216
4 0.897 14 0.163
5 0.843 15 0.120
6 0.776 16 0.086
7 0.697 17 0.060
8 0.612 18 0.041
9 0.524 19 0.028

10 0.436 20 0.018

shift in x1 for achieving the same level of false-alarm
probability when the dimension p increases from 1 to
20. The dimensions of the chart are listed in the first
and the third columns. The false-alarm probability
is set to be 0.002.

It is easy to see that a shift of size 1.0 can be
detected with probability 0.982 if it is monitored in-
dividually (p = 1); however, if it is jointly monitored
with another in-control variable (p = 2), the detec-
tion probability becomes 0.964. When p = 10, the
detection probability decreases to 0.436, while when
p = 20, it decreases to 0.018. This illustrates that
power of detecting the signal of x1 is diminished by
other variables due to the inclusion of more noises.
Runger and Alt (1996) found a similar phenomenon
in their work. This example demonstrates the neces-
sity to “reduce dimension” in multivariate statistical
process control (SPC) because it will be hard to de-
tect a weak signal in a high-dimensional scenario.
In this research, we concentrate on high-dimensional
cases where a few key variables can dominate the re-
sults. As we tend to believe that the number of such
key variables that carry shift information is usually
low, we propose using variable-selection techniques
to locate potential out-of-control variables first, and
then monitor these variables only. It is expected that
monitoring only selected variables can be more effi-
cient than monitoring all variables simultaneously.

Essentially there are two critical tasks for any SPC
technique designed for high-imensional processes to
accomplish: the ability to trigger an alarm when a
process deviates from its normal condition, and the
ability to identify specific variables that are respon-
sible for such alarms. The former task focuses on

shift detection, and the later one focuses on alarm
diagnosis. Traditional SPC schemes usually focus on
only one of the tasks. For example, Hotelling’s T 2

chart, multivariate versions of EWMA (MEWMA)
and CUSUM (MCUSUM) charts are designed to
detect process shifts but not to provide more in-
sights regarding which variable(s) are responsible for
the alarm (Woodall and Ncube (1985), Lowry and
Montgomery (1995)). In addition, these charts treat
all variables equally. In a process with dozens or
even hundreds of variables, efficiency of such control
charts could decrease quickly due to the foregoing
reasons.

On the other hand, different fault diagnostic
techniques have been developed separately. The
regression-adjusted chart (Hawkins (1991), Hawkins
(1993)) is one charting strategy that can pro-
vide diagnostic information. For a cascade process,
this chart regresses downstream variables on up-
stream variables to identify root causes (Hawkins and
Maboudou-Tchao (2008)). An adaptive regression-
adjusted monitoring scheme was proposed by Liu
et al. (2006); a procedure to search for root causes
when an alarm is triggered was also presented. How-
ever, the authors indicated that the computational
cost may increase significantly when the number of
variables increases. The MYT-decomposition (Ma-
son et al. (1995), Mason and Young (1999)) extends
the idea to a more general situation by enumerat-
ing all possible combinations of variables to screen
for out-of-control variables. The MYT decomposi-
tion can be optimized and utilized efficiently with
large number of variables. However, MYT decompo-
sition is designed for searching for root causes but
not for detecting process shifts in nature. In this pa-
per, we propose a variable-selection-based multivari-
ate SPC (MSPC) control chart, which is denoted as
the VS-MSPC chart hereafter. The VS-MSPC chart
conducts an automated variable-selection procedure
to screen out potential shift variables and estimate
their shift magnitudes first, then monitor only the
chosen variables. Because the number of simultane-
ously shift variables is usually rather small in a high-
dimensional process, most in-control variables are re-
moved from the monitoring procedure and only po-
tential shift variables are examined. The treatment
is expected to improve fault-detection performance
and isolate root causes simultaneously.

The rest of this paper is organized as follows. Sec-
tion 2 derives a penalized likelihood function for vari-
able selection, based on which the VS-MSPC chart
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is proposed in Section 3. Section 4 investigates the
performance of the proposed method and compares
it with Hotelling’s T 2 chart. Section 5 concludes this
paper with a summary of main features of the VS-
MSPC chart.

Penalized Likelihood for
Out-of-Control Variable Selection

In this section, we first derive a generalized likeli-
hood ratio test (GLRT) statistic, which is useful for
analyzing SPC algorithms. By considering a practi-
cal assumption that it is unusual for all variables in
a high-dimensional process to shift simultaneously,
a penalized likelihood is then considered to identify
potential out-of-control variables. The solution of the
penalized likelihood function is found by using exist-
ing variable-selection algorithms. The identified vari-
ables will be further utilized in Section 3 for process
monitoring and root-cause discovery.

GLRT Statistic for Process Monitoring

Let yt be a p-dimensional observation collected at
step t. Assume yt ∼ Np(μ,Σ). Checking the status of
process means, which may be either in control or out
of control, is equivalent to examining the following
statistical hypothesis:

{
H0 : μ ∈ Ω0

H1 : μ ∈ Ω1,
(1)

where, without loss of generality, Ω0 = {0} represents
the parameter space when the process is in control;
Ω1 = {μ : μ = δd, δ > 0} is the parameter space
when the process is out of control. Here, d is a unit-
length direction vector, ‖d‖Σ−1 =

√
d′Σ−1d = 1; δ is

a scalar that represents the length of a shift. There-
fore, δd can represent mean shifts in any directions
with any magnitudes.

To test the above hypothesis, we investigate the
GLRT statistic with respect to it:

λ(yt) =
max
μ∈Ω0

L(yt, μ)

max
μ∈Ω1

L(yt, μ)
,

where L(yt, μ) is the likelihood corresponding to yt.
The null hypothesis is rejected and the alternative
hypothesis is favored if λ(yt) < c1, where c1 > 0 is
a constant that corresponds to a specific type-I error
of the test.

Because Ω0 = {0}, which contains only a single
point, the rejection region of the hypothesis can be

simplified as

λ(yt) =
L(yt, 0)

max
μ∈Ω1

L(yt, μ)
≤ c1,

or equivalently,

Λ(yt) = log λ(yt)
= min

μ∈Ω1
(log L(yt, 0) − log L(yt, μ)) < log c1. (2)

Under the assumption that yt ∼ Np(μ,Σ), the like-
lihood of yt is given by

L(yt, μ) =
1

(2π)p/2|Σ|1/2
e−(yt−μ)TΣ−1(yt−μ)/2.

Therefore, the rejection region in Equation (2) is
equivalent to

Λ(yt) = min
μ∈Ω1

(
−yT

t Σ−1yt + (yt − μ)TΣ−1(yt − μ)
)

< log c1.

Let
S2 = min

μ∈Ω1

(
(yt − μ)TΣ−1(yt − μ)

)
. (3)

We reject the null hypothesis in Equation (1) if

Λ(yt) = yT
t Σ−1yt − S2 > c (4)

holds, where C = − log c1. The minimum of Equation
(3) is attained when μ∗ = yt, which directly leads
to S2 = 0. The resulting inequality characterizes the
rejection region of Hotelling’s T 2 chart, which in turn
implies that Hotelling’s T 2 chart can be viewed as a
GLRT procedure (Jiang and Tsui (2008)).

The Penalized Likelihood for Variable
Selection

The solution of Equation (3), denoted by μ∗, can
be viewed as an estimator of μ. However, the cur-
rent mathematical solution, μ∗ = yt, has obviously
ignored important engineering background. Without
loss of generality, we assume μ = 0 when the process
is in control. As yt contains both useful and noise
signals, setting μ∗ = yt is obviously inaccurate be-
causee all elements of yt are contaminated by noises.
Alternatively, it is more reasonable to assume that
most elements of yt that have values close to zero
are in control and their true mean is zero.

In order to force small coefficients to zero and in-
crease model interpretability, we consider adding a
penalty term to Equation (3). This leads to

S2 = min
μ∈Ω1

⎛
⎝(yt − μ)TΣ−1(yt − μ) +

p∑
j=1

pλj
(|μj |)

⎞
⎠,

(5),
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where p is the dimension of yt and |μt| is the absolute
value of the ith element of μ, i.e., the true mean of
the ith variables. The newly added term, pλj (·), is
a penalty function that controls model complexity,
i.e., the number of variables with nonzero mean value
|μi| > 0. By properly choosing pλj

(·), the solution of
Equation (5) is expected to automatically set small
means to zero and leave only potential out-of-control
variables.

Different penalty functions have been proposed in
the literature of variable selection. Fan and Li (2006)
provided a review of these methods and suggested
that, for an Lq-penalty function with q ≤ 1, the pe-
nalized least square automatically performs variable
selection by removing predictors with very small es-
timated coefficients. Two special forms of the penal-
ized functions in Equation (5) are the L1 penalty and
L0 penalty. With the L1 penalty, pλj

(|μj |) = λ|μj |,
minimizing the penalized likelihood function is equiv-
alent to minimizing the original likelihood function
in Equation (3) subject to the following constraint:

p∑
i=1

|μi| ≤ c2,

or simply,

S2(λ) = min
μ∈Ω1

⎛
⎝(yt − μ)TΣ−1(yt − μ) + λ

p∑
j=1

|μj |

⎞
⎠,

(6),
where λ is a penalty parameter that depends on
c2. Equation (6) corresponds to the least absolute
shrinkage and selection operator, or the LASSO,
which was proposed by Tibshirani (1996).

With the L0 penalty, pλj
(|μj |) = λI(|μj | �= 0), the

penalized likelihood function becomes

S2(λ) = min
μ∈Ω1

(
(yt − μ)TΣ−1(yt − μ) + λM

)
, (7),

where M =
∑

j I(|μj | �= 0) is the number of nonzero
coefficients in the final model. Instead of limiting
the sum of absolute values of the coefficients, the L0

penalty constrains the number of nonzero coefficients
in μ.

Both Equations (6) and (7) are capable of delet-
ing variables that are close to zero in least square re-
gression. In this research, we choose the L0 penalty
because it directly limits the number of nonzero coef-
ficients in the model. The variables with coefficients
being set to zero are treated as in control while other
variables are potential out-of-control variables and

their shift magnitudes are estimated by the corre-
sponding elements of μ∗. A solution of Equation (7)
is derived in the following section.

Minimizing the Penalized Least Square

Because Σ is the variance–covariance matrix of yt

in Equation (7), both Σ and Σ−1 are positive definite.
Using the Cholesky decomposition of Σ−1 = xTx,
where x is an upper triangular matrix, the penalized
likelihood in Equation (7) can be written as as

S2(λ) = min
μ∈Ω1

(
(yt − μ)TxTx(yt − μ) + λM

)
= min

μ∈Ω1

(
(xyt − xμ)T(xyt − xμ) + λM

)
.

Let zt = xyt, then zt follows a multivariate nor-
mal distribution with mean xμ and variance xΣxT.
Because xΣxT = I, zt ∼ Np(xμ, I), i.e., zt is essen-
tially a standardized vector of yt. Treating x as the
covariates or design points and zt as the response,
the above optimization problem can be transformed
to a penalized least square problem,

S2(λ) = min
μ∈Ω1

(
(zt − xμ)T(zt − xμ) + λM

)
, (8)

in which μ is the coefficient vector that needs to be
estimated.

Because the main purpose of solving Equation (8)
is to identify potential out-of-control variables and
estimate their shift magnitudes using μ∗, we can
rewrite Equation (8) as⎧⎪⎪⎨

⎪⎪⎩
min
μ∈Ω1

(
(zt − xμ)T(zt − xμ)

)

s.t.
∑

j

I(|μj | �= 0) ≤ s
. (9)

That is, minimizing the least square with the num-
ber of nonzero predictors less than or equal to
s. One straightforward way to find its solution is
the best subset selection algorithm, which searches
through all subsets of size k, k ∈ {0, 1, . . . , s}, to
find the smallest sum of square of residuals. However,
this searching procedure requires extensive computa-
tional resources. As indicated by Hastie et al. (2001)
on page 55, even an efficient algorithm (the leaps
and bounds procedure due to Furnival and Wilson
(1974)) is feasible for dimensions as large as 30 or 40
only. Therefore, alternative solutions with approxi-
mately optimal performance have to be studied.

The forward-variable-selection procedure is a pop-
ular heuristic algorithm for fitting regression models
that gives nearly the optimal performance. It starts
from an empty set with no predictors. At each step,
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the predictor that results in the largest decrease in
sum of square errors or the largest increase in R2 is
added to the model. The usual selection criterion is
the F -to-enter rule (Wilkinson and Dallal (1981)).
Let

F =
(R2

k+1 − R2
k)(n − k − 1)

1 − R2
k+1

,

where R2
k is the R2 statistic of the current model

with k predictors and R2
k+1 is the R2 statistic when

one more predictor is added to the model. The F -
values of all variables are tested and the one with
the highest value enters the model.

Other variable-selection algorithms, such as back-
ward selection and stepwise, may also be considered.
While in a high-dimensional process, the number
of simultaneously shifted variables is usually much
smaller than the process dimension p, it would be
faster to add variables to a simple model than to
remove variables from a full model. As the forward-
variable-selection procedure is less demanding com-
putationally when the number of candidate indepen-
dent variables is large, we use this procedure to find
the optimal μ∗ to minimize Equation (9); specifi-
cally, the algorithm proposed by Efroymson (1960)
is adopted for its high efficiency.

It should be noted that, different from the usual
fully automated subset-selection procedures that
stop searching based on statistical significance, such
as p-values or F -values, the only stopping condition
in solving Equation (9) is the constraint

∑
j I(|μj | �=

0) ≤ s. Because increasing the number of nonzero
coefficients can always decrease the sum of squares
term, the boundary of the inequality in Equation
(9) is deterministically achieved. Therefore, M =∑

j I(|μj | �= 0) = s always holds. That is, solving
Equation (9) can help us find a fixed number of po-
tential out-of-control variables. Such variables with
nonzero coefficients will be charted against a control
limit to check whether the process is in control or not.
If an alarm is triggered during testing, it is easy to
conclude that the variables with nonzero coefficients
are responsible for such an alarm, which makes the
diagnosis of alarms quite straightforward.

The Variable-Selection-Based
Multivariate Control Chart

The solution to the penalized likelihood function
locates potential out-of-control variables. In this sec-
tion, we propose monitoring these variables against
process shifts by a multivariate control chart. The

settings of unknown parameters in the proposed con-
trol chart are also discussed.

Multivariate Statistical Process Monitoring

Once the solution μ∗ is obtained via the variable-
selection procedure, potential out-of-control vari-
ables are identified and their shift magnitudes are
obtained at the same time. Substituting μ∗ for μ in
Equation (8) yields

S2 = (zt − xμ∗)T(zt − xμ∗) + λM.

Because Σ−1 = xTx and zt = xyt, it follows that

S2 = zT
t zt − zT

t x − μ∗TxTzt + μ∗TxTxμ∗ + λM

= yT
t xTxyt − yT

t xTxμ∗ − μ∗TxTxyt

+ μ∗TxTxμ∗ + λM

= yT
t Σ−1yt − yT

t Σ−1μ∗ − μ∗TΣ−1yt

+ μ∗TΣ−1μ∗ + λM

= yT
t Σ−1yt − 2yT

t Σ−1μ∗ − μ∗TΣ−1μ∗ + λM.

Now we substitute the above result for S2 in Equa-
tion (4) and obtain

Λ(yt) = 2yT
t Σ−1μ∗ − μ∗TΣ−1μ∗ − λM > c.

As previously discussed, we choose a fixed number
of nonzero coefficients via the variable-selection pro-
cedure. Therefore, M will reach the boundary condi-
tion s and become a constant. An equivalent charting
statistic is obtained by removing the constant term
and modifying the threshold value,

Λ(yt) = 2yT
t Σ−1μ∗ − μ∗TΣ−1μ∗ > c′. (10)

Equation (10) defines a new control chart for mon-
itoring process status. Because a variable-selection
procedure is first conducted to select potential out-
of-control variables and estimate their shift magni-
tudes, we name the new scheme the VS-MSPC chart.
Steps to implement the VS-MSPC chart are summa-
rized as follows:

(a) Variable selection. At each step, once a new ob-
servation is collected, variable selection is con-
ducted to identify potential out-of-control vari-
ables. The resulting nonzero coefficients esti-
mate shift magnitudes of corresponding vari-
ables. Those variables with zero-value coeffi-
cients are treated as in control.

(b) Process monitoring. Variables with nonzero co-
efficients are charted using Equation (10). If the
charting statistic exceeds a preset control limit,
an out-of-control alarm will be triggered.
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(c) Signal diagnosis. Following an out-of-control
alarm, all variables with nonzero coefficients
identified in Step (a), or equally, all the vari-
ables monitored in Step (b), are the variables
that should be responsible for this alarm.

The above procedure shows that the advantages
of the VS-MSPC procedure lie not only on the ca-
pability to identify out-of-control variables that are
responsible for an alarm but also on the capability
to estimate the corresponding shift magnitudes. The
tasks of monitoring and diagnosis in SPC are natu-
rally integrated and conveniently solved simultane-
ously.

Parameter Determination for the VS-MSPC
Chart

The maximum number of nonzero coefficients in
Equation (9), s, or equivalent M in Equation (8), is
an arbitrary parameter that should be determined
based on knowledge and experience of specific pro-
cesses. In practice, shifts in process variables could
be caused by physical failures, component malfunc-
tion, etc. The probability that multiple variables shift
simultaneously is generally low.

Suppose there are 10 independent sources of fail-
ures in a process and the probability that any fail-
ure occurs at each step is 1%. Figure 1(a) shows the
probability that multiple variables shift simultane-
ously. It is seen from Figure 1 that the probability
that no variables shift is 90.44%, one source shifts
with a probability of 9.14%, while the probability
that two sources fail simultaneously drops sharply
to 0.4%. The probability for more than two sources
shifting is very close to zero. Figure 1(b) shows the
relative probability that multiple sources shift simul-
taneously. The scale of the vertical axis is divided
by the probability that only one source shifts. It is
found that the likelihood that one source shifts is
dominating. This dominance becomes even stronger
if the probability that any individual source shifts be-
comes smaller. Therefore, it is practical and mean-
ingful to assume that, at any single step, only one
source would shift in a process.

In industrial processes, multiple sensors are some-
times placed to monitor a common physical mech-
anism. As a result, changes in one source will be
reflected in multiple channels. Under such circum-
stances, the number of simultaneously shifted pro-
cess variables can be determined by domain knowl-
edge and experience about specific processes (Li et al.
(2008)). When such domain knowledge is not avail-

FIGURE 1. The Probability That Multiple Variables Shift

Simultaneously.

able, in general, one may consider using “penalized
principal component analysis (PCA)” for determin-
ing s. Principal component analysis is a way to find
hidden structures of systems. Usually, the result-
ing principal components are linear combinations of
original variables. Penalized PCA generates principal
components that are linear combinations of partial
variables but not all variables (so that the loadings
of some variables are set to zero). Based on the pe-
nalized PCA, we can identify the variables that are
influenced by a common source of variation. In this
way, the number of simultaneously shifted variables
can be determined. Jolliffe et al. (2003) proposed a
modified PCA, which is equivalent to the concept of
“penalized PCA” we illustrated above. The use of
the penalized PCA and its integration with the VS-
MSPC chart is a topic that should be further studied
based on real-world examples.

Statistical Performance Analysis

To investigate the performance of the proposed
VS-MSPC chart, we compare it with Hotelling’s T 2
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TABLE 2. ARL Comparison, p = 10

VS-MSPC

δ T 2 M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

0.00 200.00 199.68 200.99 200.96 200.36 199.78 200.05
0.50 132.28 145.70 138.67 134.39 133.10 132.73 133.09
1.00 50.78 59.23 52.14 50.45 49.74 49.75 50.35
1.50 17.14 19.82 16.48 15.92 15.92 16.18 16.49
2.00 6.42 7.37 5.83 5.74 5.88 6.01 6.16
2.50 2.96 3.32 2.65 2.64 2.71 2.78 2.85
3.00 1.72 1.87 1.56 1.56 1.60 1.63 1.66
3.50 1.25 1.32 1.18 1.18 1.20 1.21 1.23
4.00 1.07 1.10 1.04 1.04 1.05 1.06 1.06
4.50 1.02 1.02 1.01 1.01 1.01 1.01 1.01
5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

chart, which is the most widely used chart for mul-
tivariate process monitoring. Processes with dimen-
sions p = 10, 20, 50, and 100 are considered. Without
loss of generality, we assume yt ∼ Np(0, I) when the
process is in control and yt ∼ Np([δ, δ, 0, . . . , o]T, I)
when the process is out of control. That is, two out
of the p variables are assumed to have shifts with
magnitudes δ ∈ (0, 5]. Because the exact number of
shifted variables is usually unknown in practice, fix-
ing M in the VS-MSCP chart may under- or overesti-
mate this parameter. Therefore, we choose M = 1–6
for p = 10 and M = 1, 2, 3 for p = 20, 50, and 100
to simulate different scenarios. The in-control aver-
age run length (ARL) of all control charts are set to

TABLE 3. ARL Comparison, p = 20

VS-MSPC

δ T 2 M = 1 M = 2 M = 3

0.00 200.00 200.14 200.43 200.13
0.50 151.29 164.05 158.70 156.43
1.00 73.60 82.40 74.88 72.70
1.50 29.04 28.87 24.90 24.57
2.00 11.29 10.26 8.66 8.48
2.50 4.90 4.38 3.57 3.58
3.00 2.54 2.28 1.90 1.90
3.50 1.60 1.48 1.29 1.30
4.00 1.22 1.16 1.08 1.08
4.50 1.07 1.04 1.02 1.02
5.00 1.02 1.01 1.00 1.00

200. Each ARL is obtained using at least 10,000 repli-
cates. ARL has been popularly used for control-chart
analysis. The larger the in-control ARL, the more ro-
bust the control chart; the smaller the out-of-control
ARL, the more efficient the control chart.

Tables 2–5 show the ARL performance of the VS-
MSPC chart and Hotelling’s T 2 chart. It is seen that,
even though all charts have an equal in-control ARL,
most variable-selection-based MSPC charts (except
the one with M = 1 when p = 10) outperform the
T 2 chart for δ ≥ 1.0. Simulation results also suggest
that the proposed method is quite robust even when
M is misspecified. In monitoring the process with

TABLE 4. ARL Comparison, p = 50

VS-MSPC

δ T 2 M = 1 M = 2 M = 3

0.00 200.00 200.22 199.55 199.55
0.50 169.33 182.02 177.59 176.24
1.00 106.37 114.75 108.62 107.74
1.50 54.07 46.87 42.32 42.02
2.00 24.69 16.09 14.00 14.12
2.50 11.15 6.21 5.23 5.33
3.00 5.38 2.95 2.47 2.50
3.50 2.92 1.73 1.51 1.53
4.00 1.84 1.26 1.16 1.16
4.50 1.35 1.08 1.04 1.04
5.00 1.13 1.02 1.01 1.01
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TABLE 5. ARL Comparison, p = 100

VS-MSPC

δ T 2 M = 1 M = 2 M = 3

0.00 200.00 199.45 199.22 199.12
0.50 178.54 187.44 185.62 184.31
1.00 128.79 137.94 132.71 131.37
1.50 77.99 64.38 60.41 61.03
2.00 41.84 22.46 20.55 21.07
2.50 21.10 8.27 7.29 7.49
3.00 10.60 3.65 3.16 3.22
3.50 5.57 2.00 1.76 1.79
4.00 3.19 1.37 1.25 1.26
4.50 2.04 1.12 1.07 1.07
5.00 1.48 1.03 1.01 1.01

p = 20, 50, or 100, the VS-MSPC chart is superior to
Hotelling’s T 2 chart in detecting medium and large
shifts for most cases. For some cases, M = 2 may not
necessarily give the lowest out-of-control ARL due to
the existence of noise. However, its performance is
always close to the optimal one.

It is interesting to note that the performance of
the VS-MSPC chart varies with process dimension p.
We now define an index, relative efficiency (RE), as
the ratios between the ARLs of Hotelling’s T 2 chart
and the VS-MSPC chart. Obviously, the higher this
index is, the better is the VS-MSPC chart. Based on
the ARLs shown in Tables 2–5, we choose the VS-
MSPC chart with M = 2 to compute their relative
efficiency. As is clearly seen from Figure 2, the rela-
tive efficiency of the VS-MSPC chart becomes higher
when p becomes larger, which implies that the bene-
fits of using the VS-MSPC chart for high-dimensional
processes are more prominent. This property is well
explained by the fact that larger p values correspond
to more observations in the penalized likelihood esti-
mation in Equation (5) or the restricted least square
estimator in Equation (9). It implies that applying
variable selection is an effective way to filter out po-
tentially out-of-control variables so that the control
chart can focus on suspects and make more accurate
decisions about process status.

It should be noted that the major advantage of the
VS-MSPC chart is not only its capability in detect-
ing process shifts, but also in searching for potential
out-of-control variables. That is, the chart is capable
of suggesting responsible variables when an alarm is
triggered. To investigate the diagnostic capability of

FIGURE 2. Relative Efficiency Between the VS-MSPC

Chart and Hotelling’s T 2 Chart.

the proposed scheme, a process with p = 10 is sim-
ulated and shifts of size δ are added to the first two
variables (y1 and y2). A VS-MSPC chart with M = 2
is set up and 200 out-of-control alarms are collected
from it. Corresponding variables that are responsible
for such alarms are also recorded and shown in Table
6. Each column with titles from y1 to y2 shows the
number of times that the corresponding variables are
chosen to be responsible for out-of-control alarms.
The last column, titled Correctness, is obtained by
dividing the added number of times that y1 and y2

are chosen by the sum of each row. Correctness can
be used as an indicator to check how often correct
variables are identified in the study. Table 6 clearly
shows that, although diagnostic capability of the VS-
MSPC chart is low for weak process shifts, when
the shift sizes increase, the probability that out-of-
control variables are correctly identified is increasing
significantly. Even for a shift size of 1, the correctness
probability is higher than 50%. For shifts size of three
or larger, more than 90% of the cases, out-of-control
alarms are correctly tracked down.

The above simulations are conducted assuming
an identity covariance matrix for the process. While
when the original variables are correlated or one
works on transformed independent components first
and needs to transform back to original variables, the
above findings may not hold accurately. In the follow-
ing section, a real example with a general covariance
matrix is presented and used to demonstrate the ef-
fectiveness of the VS-SPC chart for high-dimensional
process monitoring.

A Real Example

Vertical density profiles (VDP) of engineered
wooden boards is a measure of board quality (Young
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TABLE 6. Diagnostic Capability Study of the VS-MSPC Chart. p = 10, M = 2

δ y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 Correctness (%)

0.5 58 58 38 34 34 31 36 37 38 36 29.0
1.0 110 109 24 18 18 25 25 23 23 25 54.8
1.5 132 141 12 19 9 17 14 24 15 17 68.3
2.0 152 157 10 17 6 11 8 15 10 14 77.3
3.0 183 187 5 1 4 6 4 6 1 3 92.5
4.0 193 192 0 1 1 5 5 1 0 2 96.3
5.0 199 199 0 0 0 1 1 0 0 0 99.5

et al. (1999)). A VDP is formed by measuring den-
sity of a board at different depths. A dataset of 24
VDPs is presented by Walker and Wright (2002) and
reviewed by Woodall et al. (2004). Several typical
profiles and the sample average profile are shown in
Figure 3. Each profile consists of 314 points, corre-
spond to 314 random variables. Because there are
only 24 samples available, which are not sufficient
for estimating a process variance–covariance matrix,
we resample each profile by taking one point out of

every 16 points to reduce the dimension of the curves
to 20. Then each curve has 20 variables left. In addi-
tion, all profile variables are standardized to have a
mean of zero and variances of one.

In this section, we plot these profiles on a VS-
MSPC chart and compare it with Hotelling’s T 2

chart. During variable selection, five variables are
retained to have nonzero coefficients. The sample
variance–covariance matrix is calculated and utilized

FIGURE 3. Typical Vertical Density Profiles and the Average Profile. Top row, raw profiles; bottom row, standardized

profiles.
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FIGURE 4. Statistical Monitoring of VDPs. Left, VS-MSPC chart; right, Hotelling’s T 2 chart.

for control-chart design. The resulting VS-MSPC
chart is shown in Figure 4. The UCL correspond-
ing to an in-control ARL of 200 is shown. The
control limit of Hotelling’s T 2 chart is set to Inv-
χ2

0.995,20 = 39.9968, with a corresponding in-control
ARL of 200.

As seen in Figure 4, both charts show no out-
of-control points. However, the relative shift magni-
tudes of samples are seen to be different. For exam-
ple, VS-MSPC reports that sample 13 is farther away
from the baseline than sample 21, while Hotelling’s
T 2 chart reports the opposite situation. If we check
the standardized samples 13 and 21, as shown in Fig-
ure 5, we can find that most points of sample 13 stay
far above zero. Sample 21, on the other hand, is far
deviated from zero only near its two ends. Because
the VS-MSPC chart has taken the correlation struc-
ture of the variables into consideration and chosen
most representative variables to characterize the pro-
files, it can differentiate these profiles in a more easily
understandable way.

It can be seen from Figure 4 that the points on
the VS-MSPC charts are closer to the control limit
than those on the T 2 chart. To assess the closeness
to the decision boundary, p-values of the observed T 2

points can be evaluated. The largest point on the VS-
MSPC chart has a p-value of 0.139, while the largest
point on the T 2 chart has a p-value of 0.360, which
is much higher. This shows that the VS-MSPC chart
is expected to be more sensitive than the T 2 chart if
any abnormal conditions happen.

Williams et al. (2007) analyzed the same dataset
and concluded that with a type-I error of α = 0.05,
sample 15 is the most profound outlier, but sample
13 is not suspected by any charts the authors tried.
However, in their analysis, the correlation structure
among the variables was ignored. In fact, all variables
are strongly correlated in this example. Most correla-
tion coefficients are larger than 0.7 or even 0.9. Fig-
ure 5 shows the plots of samples 13 and 15. It is seen
that, even though sample 15 deviates far from zero
near its high end, it stays closer to zero than sample

FIGURE 5. Plots of Samples. Left, samples 13 and 21; right, samples 13 and 15.
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13 at most of the rest of the locations. Again, the
VS-MSPC gives results that are consistent with our
graphical observations.

Conclusions

The statistical monitoring of high-dimensional ap-
plications, such as sensor networks and complicated
manufacturing systems, usually exhibit poor perfor-
mance due to the fact that shifts in partial variables
are averaged out by the huge amount of in-control
variables. When out-of-control alarms are received,
it is also difficult to diagnose such alarms and locate
responsible variables. In this research, a variable-
selection-based MSPC control chart, namely the VS-
MSPC chart, is proposed to tackle the aforemen-
tioned challenges. An automated forward-selection
procedure is utilized to screen out potential out-of-
control variables. Shift magnitudes of these variables
are also estimated. A multivariate SPC chart is then
set up to monitor only the suspicious variables.

Simulation results show that the proposed scheme
is superior to the Hotelling’s T 2 chart for high-
dimensional processes in detecting moderate and
large shifts. The proposed scheme is also robust to
parameter misspecification. Even if the exact num-
ber of out-of-control variables is not accurately set
in the control chart, the resulting performance is still
promising. Most important, the VS-MSPC chart in-
tegrates process monitoring and diagnosis in a coher-
ent step and provides a complete solution for SPC of
high-dimensional systems.

Our limited simulation experiments have shown
that the VS-MSPC chart is not so sensitive in detect-
ing small shifts compared with Hotelling’s T 2 chart.
This is mainly due to the random noises that con-
ceal the weak signals. Similar to the ideas behind
the CUSUM- and EWMA-type of control charts, cu-
mulating historical observations is expected to help
detect small shifts in the VS-MSPC chart. This will
be further pursued in another paper. Moreover, when
latent variables are available in a high-dimensional
system, Runger et al. (2007) proposed a systematic
way for process monitoring and fault isolation by us-
ing weighted least squares methods to regress obser-
vations on latent faults/sources. It is expected that
their process-modeling strategies are helpful to the
VS-MSPC chart in achieving better process under-
standing and determining optimal charting parame-
ters.

In this research, we treat all mean vectors and co-

variance matrices as unknown. The estimate of these
unknown parameters and determination of sample
size for parameter estimation are also important top-
ics that deserve future research efforts. Finally, the
forward-variable-selection procedure is considered in
this research to find potential out-of-control vari-
ables. Other variable-selection algorithms may be
considered in future research.
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